STATISTICS (C) UNIT 2 TEST PAPER 1

1.	The arrival time of commuters at a station is normally distributed, with 8% of them arriving mothers from the train's scheduled departure at 7.35 am, and 3% missing it when it leave		
	(i) Find the mean and standard deviation of their arrival times.(ii) If the train leaves one minute late one day, find the percentage of commuters who catch	[4]	
2.	 The number of copies of <i>The Statistician</i> that a newsagent sells each week is modelled by a Poisson distribution. On average, he sells 1.5 copies per week. (i) Find the probability that he sells no copies in a particular week. (ii) If he stocks 5 copies each week, find the probability he will not have enough copies to meet that week's demand. (iii) Find the minimum number of copies that he should stock in order to have at least a 95% probability of being able to satisfy the week's demand. 	[1] [2] [3]	
3.	A fair die is rolled 60 times. Use an suitable approximation to find the probability of scoring less than five sixes.	[6]	
4.	Briefly describe the difference between a population and a sample. A village council has to decide whether or not to build a new village hall. In one road of the village, out of 120 residents, 54 think that the new hall would be a waste of money. Working at the 5% significance level, test the hypothesis that the villagers are evenly divided for and against the new building.	[2] e	
5.	 In a certain field, daisies are randomly distributed, at an average density of 0.8 daisies per cm One particular patch, of area 1 cm², is selected at random. Assuming that the number of daisies per cm² has a Poisson distribution, (i) find the probability that the chosen patch contains (a) no daisies, (b) one daisy. 	n ² .	
	 Ten such patches are chosen. Using your answers to part (i), (ii) find the probability that the total number of daisies is less than two. (iii) Use a suitable approximation to find the probability that a patch of area 1 m² contains more than 8 100 daisies. 	[4] [5]	
6.	Each day on the way to work, a commuter encounters a similar traffic jam. The length of times minute units, spent waiting in the traffic jam is modelled by the random variable <i>T</i> with the probability density function: $f(t) = k(t^{3} - 4t^{2} + 4t) \qquad 0 < t < 2,$ $f(t) = 0 \qquad \text{otherwise.}$ (i) Find the value of <i>k</i> . (ii) Find the mean waiting time (iii) Show that 0.77 is approximately the median value of <i>T</i> .	[3] [2] [3]	
	(iv) Given that he has already waited for 12 minutes, find the probability that he will have to wait at least another 3 minutes.		

- 7. A drug currently used to relieve a certain disease has a recovery time which is normally distributed with a mean of 7.2 hours and a standard deviation of 1.4 hours. A new drug, when trialled on 20 patients, has a mean recovery time of 6.3 hours, with the same standard deviation.
 - (i) Test, at the 0.1% significance level, whether the new drug is better than the old. [4]

	(ii) In this situation, explain what is meant by a Type I error and find the pro-	•	
	making it. (iii) If the new drug actually has a mean recovery time of 6.1 hours, find the p	[2] probability of	
	making a Type II error on the basis of the sample of 20 patients. State ar	5	
	made in your working.	[6]	
STATISTICS 2 (C) TEST PAPER 1 : ANSWERS AND MARK SCHEME			
1.	(i) $1.88 = (455 - \mu)/\sigma$ $-1.406 = (450 - \mu)/\sigma$ Work in minutes	B1 B1	
	$\mu = 452.14 = 7.32$ am $\sigma = 1.52$	M1 A1 (both)	
	(ii) $z = (456 - 452.14) / 1.52 = 2.537$, so 99.4% of commuters catch it	M1 A1 6	
2.	(i) $X \sim Po(1.5)$ $P(X=0) = e^{-1.5} = 0.223$	B1	
	(ii) $P(X > 5) = 1 - 0.9955 = 0.0045$	M1 A1	
	(iii) $P(X < 3) = 0.9344$ and $P(X < 4) = 0.9814$, so he needs 4 copies	M1 M1 A1 6	
3.	No. of sixes $X \sim B(60, \frac{1}{6})$ $X \sim N(10, 8.333)$	B1 B1	
	P(X < 5) = P(Z < (4.5 - 10) / 2.887) = P(Z < -1.905) = 0.0284	M1 A1 M1 A1 6	
4.	Population : all items being considered Sample : a selected subset	B1 B1	
	Let $p = \text{proportion in favour of new hall}; H0 : p = 0.5, H1 : p < 0.5$	B1	
	$X \sim Bin(120,0.5)$ $X \sim N(60,30)$		
	$P(X \le 54) = P(X \le 54.5)$ $z = (54.5-60) / \sqrt{30} = -1.004$	M1 A1	
	This is > -1.645 , the critical value at 5% level, so do not reject H0	M1 A1 7	
5.	(i) (a) $P(X=0) = e^{-0.8} = 0.449$ (b) $P(X=1) = 0.8e^{-0.8} = 0.359$	B1 B1	
	(ii) $P(0) + P(1) = 0.449^{10} + 10 \times 0.449^9 \times 0.359 = 0.002996$	M1 M1 A1 A1	
	(iii) In 1 m ² , expect 8000 daisies so use Po(8000) \approx N (8000, 8000) P(V: 0.100 5) = P(7: 100 5/00 44) = P(7: 110) = 0.121	B1 B1	
	P(X > 8100.5) = P(Z > 100.5/89.44) = P(Z > 1.12) = 0.131	M1 A1 A1 11	
6.	(i) $k \int_{0}^{2} f(t)dt = 1$, $k \left[\frac{t^{4}}{4} - \frac{4t^{3}}{3} + 2t^{2} \right]_{0}^{2} = 1$ $\frac{4}{3}k = 1$ $k = \frac{3}{4}$	M1 A1 A1	
	(ii) Mean = $\frac{3}{4}\int t \times f(t)dt = \frac{3}{4}\left[\frac{t^5}{5} - \frac{4t^4}{4} + \frac{4t^3}{3}\right]_0^2 = 0.8$, i.e. 8 minutes	M1 A1	
	(iii) We require $\frac{3}{4}\left[\frac{t^4}{4} - \frac{4t^3}{3} + 2t^2\right] = \frac{1}{2}$	M1	
	Substitute $m = 0.77$, get 0.4987 , so $m \approx 0.77$	M1 A1	
	(iv) $P(T > 1 \cdot 2) = 1 - k \int_{0}^{1.2} f(t) dt = \int_{0}^{1.2} t^3 - 4t^2 + 4t dt = 0.179$	B1	
	$P(T > 1.5) = 1 - k \int_{0}^{1.5} f(t)dt = \int_{0}^{1.5} t^{3} - 4t^{2} + 4t dt = 0.051$	B1	
7.	Therefore, $P(T > 1.5 T > 1.2) = 0.051 / 0.179 = 0.283$ (i) H0 : mean = 7.2 Test statistic	M1 A1 12	
. •	$z = (6.3 - 7.2) / (1.4/\sqrt{20})$	B1 M1	
	= -2.875 > -3.09 (crit. value at 0.1% level), so do not reject H0	A1 A1	
	(ii) Type I error means rejecting old drug in favour of new, when new		
	is actually no better; probability = significance level i.e. 0.1%	B1 B1	
	(iii) At 0.1% level, critical value is $7.2 - 3.090 \times 1.4 / \sqrt{20} = 6.23$	M1	
	So P(X > 6.23), given mean = 6.1, is P(Z > $(6.23 - 6.1)/(1.4/\sqrt{20}))$	M1 A1	
	= P(Z > 0.424) = 0.336. This is probability of Type II error	A1 A1	
	Assumed standard deviation is the same	B1 12	